Inference for Proportions
proportions.Rmd
Inference for One Proportion
It will automatically choose between Wilson’s CI and the “exact” CI. No null hypothesis is tested by default.
one_proportion_inference(vs ~ 1, data = mtcars2)
response | x | n | proportion | SE | conf.low | conf.high |
---|---|---|---|---|---|---|
vs = straight | 14 | 32 | 0.438 | 0.088 | 0.282 | 0.607 |
Wilson's proportion test (two.sided), with 95% confidence intervals. |
Separately by another categorical variable
one_proportion_inference(vs ~ am, data = mtcars2)
response | variable | x | n | proportion | SE | conf.low | conf.high |
---|---|---|---|---|---|---|---|
vs = straight | am = automatic | 7 | 19 | 0.37 | 0.11 | 0.19 | 0.59 |
vs = straight | am = manual | 7 | 13 | 0.54 | 0.14 | 0.29 | 0.77 |
Wilson's proportion test (two.sided), with 95% confidence intervals. |
Inference for Two Proportions
It will automatically choose between the asymptotic test (with or without continuity correction) and Fisher’s test.
two_proportion_inference(vs ~ am, data = mtcars2)
response | variable | difference | SE | conf.low | conf.high | chisq.value | p.value |
---|---|---|---|---|---|---|---|
vs = straight | am: automatic - manual | −0.17 | 0.18 | −0.58 | 0.24 | 0.348 | 0.56 |
2-sample test for equality of proportions with continuity correction (two.sided), with 95% confidence intervals. |
together in one table
combine_tests(
one_proportion_inference(vs ~ am, data = mtcars2),
two_proportion_inference(vs ~ am, data = mtcars2))
response | variable | x | n | proportion | difference | SE | conf.low | conf.high | chisq.value | p.value | footnote |
---|---|---|---|---|---|---|---|---|---|---|---|
vs = straight | am = automatic | 7 | 19 | 0.37 | 0.11 | 0.19 | 0.59 | 1 | |||
vs = straight | am = manual | 7 | 13 | 0.54 | 0.14 | 0.29 | 0.77 | 1 | |||
vs = straight | am: automatic - manual | −0.17 | 0.18 | −0.58 | 0.24 | 0.348 | 0.56 | 2 | |||
1 Wilson's proportion test (two.sided), with 95% confidence intervals. | |||||||||||
2 2-sample test for equality of proportions with continuity correction (two.sided), with 95% confidence intervals. |
Pairwise Proportion Tests
combine_tests(
one_proportion_inference(vs ~ cyl, data = mtcars2),
pairwise_proportion_inference(vs ~ cyl, data = mtcars2))
response | variable | x | n | proportion | difference | SE | conf.low | conf.high | p.value | p.adjust | footnote |
---|---|---|---|---|---|---|---|---|---|---|---|
vs = straight | cyl = 4 | 10 | 11 | 0.909 | 0.087 | 0.587 | 0.998 | 1,2 | |||
vs = straight | cyl = 6 | 4 | 7 | 0.57 | 0.19 | 0.18 | 0.90 | 1,3 | |||
vs = straight | cyl = 8 | 0 | 14 | 0.00 | 0.00 | 0.23 | 1,2 | ||||
vs = straight | cyl: 4 - 6 | 0.34 | 0.21 | 0.25 | 0.74 | 4,5,6 | |||||
vs = straight | cyl: 4 - 8 | 0.909 | 0.087 | < 0.0001 | < 0.0001 | 4,5,6 | |||||
vs = straight | cyl: 6 - 8 | 0.57 | 0.19 | 0.0058 | 0.018 | 4,5,6 | |||||
1 Exact binomial test (two.sided), with 95% confidence intervals. | |||||||||||
2 Method chosen because observed proportion < 0.10. | |||||||||||
3 Method chosen because n < 10. | |||||||||||
4 Fisher's Exact Test for Count Data (two.sided) | |||||||||||
5 Method chosen due to expected counts < 5. | |||||||||||
6 p-values adjusted for 3 multiple comparisons using the Bonferroni method. |
Paired Proportion Test (McNemar’s)
combine_tests(
one_proportion_inference(pass1 + pass2 ~ 1, data = passfail),
one_proportion_inference(pass2 ~ pass1, data = passfail, all_success = TRUE),
paired_proportion_inference(pass2 - pass1 ~ 1, data = passfail))
response | variable | x | n | proportion | SE | conf.low | conf.high | null | chisq.value | p.value | footnote |
---|---|---|---|---|---|---|---|---|---|---|---|
pass1 = pass | 30 | 50 | 0.600 | 0.069 | 0.462 | 0.724 | 1 | ||||
pass2 = pass | 37 | 50 | 0.740 | 0.062 | 0.604 | 0.841 | 1 | ||||
pass2 = fail | pass1 = fail | 5 | 20 | 0.250 | 0.097 | 0.112 | 0.469 | 1 | |||
pass2 = pass | pass1 = fail | 15 | 20 | 0.750 | 0.097 | 0.531 | 0.888 | 1 | |||
pass2 = fail | pass1 = pass | 8 | 30 | 0.267 | 0.081 | 0.142 | 0.444 | 1 | |||
pass2 = pass | pass1 = pass | 22 | 30 | 0.733 | 0.081 | 0.556 | 0.858 | 1 | |||
pass: pass2 - pass1 | 15 | 23 | 0.652 | 0.099 | 0.449 | 0.812 | 0.500 | 2.13 | 0.14 | 2 | |
1 Wilson's proportion test (two.sided), with 95% confidence intervals. | |||||||||||
2 McNemar's test, using Wilson's proportion test (two.sided), with 95% confidence intervals. |
Independence Test
It will automatically choose between the chi-squared test and Fisher’s test.
combine_tests(
one_proportion_inference(cyl ~ vs, data = mtcars2, all_success = TRUE),
independence_test(cyl ~ vs, data = mtcars2))
response | variable | x | n | proportion | SE | conf.low | conf.high | p.value | footnote |
---|---|---|---|---|---|---|---|---|---|
cyl = 4 | vs = V-shaped | 1 | 18 | 0.056 | 0.054 | 0.001 | 0.273 | 1,2 | |
cyl = 6 | vs = V-shaped | 3 | 18 | 0.167 | 0.088 | 0.058 | 0.392 | 3 | |
cyl = 8 | vs = V-shaped | 14 | 18 | 0.778 | 0.098 | 0.548 | 0.910 | 3 | |
cyl = 4 | vs = straight | 10 | 14 | 0.71 | 0.12 | 0.45 | 0.88 | 3 | |
cyl = 6 | vs = straight | 4 | 14 | 0.29 | 0.12 | 0.12 | 0.55 | 3 | |
cyl = 8 | vs = straight | 0 | 14 | 0.00 | 0.00 | 0.23 | 1,2 | ||
cyl | vs | < 0.0001 | 4,5 | ||||||
1 Exact binomial test (two.sided), with 95% confidence intervals. | |||||||||
2 Method chosen because observed proportion < 0.10. | |||||||||
3 Wilson's proportion test (two.sided), with 95% confidence intervals. | |||||||||
4 Fisher's Exact Test for Count Data | |||||||||
5 Method chosen due to expected counts < 5. |